Computer graphics III Path tracing

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Tracing paths from the camera

```
renderImage()
{
    for all pixels
    {
        Color pixelColor = (0,0,0);
        for k = 1 to N
        {
        \omega
        pixelColor += getLi(camPos, }\mp@subsup{\omega}{\textrm{k}}{}\mathrm{ )
        }
        pixelColor /= N;
        writePixel(pixelColor);
    }
}

\section*{Path tracing, v. 0.1 (recursive form)}
getLi ( \(\mathrm{x}, \omega\) ):
\(y=\) nearestIntersect \((x, \omega)\)
return
\[
\begin{array}{ll}
\operatorname{getLe}(y,-\omega)+ & / / \text { emitted radiance } \\
\operatorname{getLr}(y,-\omega) & / / \text { reflected radiance }
\end{array}
\]
\(\operatorname{getLr}\left(\mathrm{x}, \omega_{\text {inc }}\right):\)
\(\left[\omega_{\text {gen }}, \operatorname{pdf}_{\text {gen }}\right]=\operatorname{genRndDirBrdfIs}\left(\omega_{\text {inc }}, \operatorname{normal}(x)\right)\)

\section*{return}
\[
1 / \operatorname{pdf}_{\mathrm{gen}} * \operatorname{getLi}\left(\mathrm{x}, \omega_{\mathrm{gen}}\right) * \operatorname{brdf}\left(\mathrm{x}, \omega_{\mathrm{inc}}, \omega_{\mathrm{gen}}\right) * \operatorname{dot}\left(\operatorname{normal}(\mathrm{x}), \omega_{\mathrm{gen}}\right)
\]

\section*{Path Tracing - Loop version}
```

getLi(x, wo)
{
Spectrum throughput = (1,1,1)
Spectrum accum = (0,0,0)
while(1)
{
hit = nearestIntersect(x, wo)
if no intersection
return accum + throughput * bgRadiance (x, wo)
if isOnLightSource(hit)
accum += thrput * getLe(hit.pos, -wo)
[wi, pdf(wi)] := SampleDir(hit)
Spectrum tputUpdate = 1/pdf(wi) * fr(hit.pos, wi, -wo) * dot(hit.n, wi)
survivalProb = min(1, tputUpdate.maxComponent)
if rand() < survivalProb // russian roulette - survive (reflect)
thrput *= tputUpdate / survivalProb
x := hit.pos
wo := wi
else // terminate path
break;
}
return accum;
}

Path termination - Russian roulette

```
getLi(x, wo)
{
    Spectrum throughput = (1,1,1)
    Spectrum accum = (0,0,0)
    while(1)
    {
        hit = nearestIntersect(x, wo)
        if no intersection
        return accum + throughput * bgRadiance (x, wo)
            if isOnLightSource(hit)
            accum += thrput * getLe(hit.pos, -wo)
        [wi, pdf(wi)] := SampleDir(hit)
        Spectrum tputUpdate = 1/pdf(wi) * fr(hit.pos, wi, -wo) * dot(hit.n, wi)
        survivalProb = min(1, tputUpdate.maxComponent)
        if rand() < survivalProb // russian roulette - survive (reflect)
            thrput *= tputUpdate / survivalProb
            x := hit.pos
            wo := wi
        else // terminate path
        break;
    }
    return accum;
}

\section*{Terminating paths - Russian roulette}
- Continue the path with probability \(q\)
- Multiply weight (throughput) of surviving paths by 1 / \(q\)
\[
Z=\left\{\begin{array}{cc}
Y / q & \text { if } \xi<q \\
0 & \text { otherwise }
\end{array}\right.
\]
- RR is unbiased!
\[
E[Z]=\frac{E[Y]}{q} \cdot q+0 \cdot \frac{1}{q-1}=E[Y]
\]

\section*{Survival probability - How to set it?}
- It makes sense to use the surface reflectivity \(\rho\) as the survival probability
- If the surface reflects only \(30 \%\) of energy, we continue with the probability of \(30 \%\). That's in line with what happens in reality.
- What if we cannot calculate \(\rho\) ? Then there's a convenient alternative, which in fact works even better:
1. First sample a random direction \(\omega_{i}\) according to \(p\left(\omega_{i}\right)\)
2. Use the sampled \(\omega_{\mathrm{i}}\) it to calculate the survival probability as
\[
q_{\text {survival }}=\min \left\{1, \frac{f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cos \theta_{\mathrm{i}}}{p\left(\omega_{\mathrm{i}}\right)}\right\}
\]

\section*{Adjoint-drive RR and splitting}

Plain path tracing
RMSE: \(5.22 \times 10^{-3}\)


Our ADRRS in path tracing
RMSE: \(4.92 \times 10^{-3}\)


Vorba and Křivánek. Adjoint-Driven Russian Roulette and Splitting in Light Transport Simulation. ACM SIGGRAPH 2016

\section*{Direction sampling}
```

getLi(x, wo)
{
Spectrum throughput = (1,1,1)
Spectrum accum = (0,0,0)
while(1)
{
hit = nearestIntersect(x, wo)
if no intersection
return accum + throughput * bgRadiance (x, wo)
if isOnLightSource(hit)
accum += thrput * getLe(hit.pos, -wo)
[wi, pdf(wi)] := SampleDir(hit)
Spectrum tputUpdate = 1/pdf(wi) * fr(hit.pos, wi, -wo) * dot(hit.n, wi)
survivalProb = min(1, tputUpdate.maxComponent)
if rand() < survivalProb // russian roulette - survive (reflect)
thrput *= tputUpdate / survivalProb
x := hit.pos
wo := wi
else // terminate path
break;
}
return accum;
}

Direction sampling

- We usually sample the direction ω_{i} from a pdf similar to

$$
f_{r}\left(\omega_{\mathrm{i}}, \omega_{0}\right) \cos \theta_{\mathrm{i}}
$$

- Ideally, we would want to sample proportionally to the integrand itself

$$
L_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) f_{r}\left(\omega_{\mathrm{i}}, \omega_{0}\right) \cos \theta_{\mathrm{i}},
$$

but this is difficult, because we do not know L_{i} upfront. With some precomputation, it is possible to use a rough estimate of L_{i} for sampling [Jensen 95, Vorba et al. 2014], cf. "guiding".

BRDF importance sampling

- Let's see what happens when the pdf is exactly proportional to $f_{r}\left(\omega_{\mathrm{i}}, \omega_{0}\right) \cos \theta_{\mathrm{i}}$?

$$
p\left(\omega_{\mathrm{i}}\right) \propto f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}}
$$

- Normalization (recall that a pdf must integrate to 1)

$$
p\left(\omega_{\mathrm{i}}\right)=\frac{f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}}}{\int_{H(\mathbf{x})} f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}}}
$$

The normalization factor is nothing but the reflectance ρ

BRDF IS in a path tracer

- Throughput update for a general pdf

```
thrput *= fr(.) * dot(.) / ( p * p(wi) )
```

- A pdf that is exactly proportional to BRDF * cos keeps the throughput constant because the different terms cancel out!

$$
p\left(\omega_{\mathrm{i}}\right)=f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{i} / \rho
$$

$$
\text { thrput *= } 1
$$

- Physicists and nuclear engineers call this the "analog" simulation, because this is how real particles behave.

Path guiding

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014

Path guiding

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014

Direct illumination calculation in a path tracer

Direct illumination: Two strategies

- At each path vertex \mathbf{x}, we are calculating direct illumination
- i.e. radiance reflected from a point \mathbf{x} on a surface exclusively due to the light coming directly from the sources
- Two sampling strategies

1. BRDF-proportional sampling
2. Light source area sampling

Image: Alexander Wilkie

The use of MIS in a path tracer

- For each path vertex:
- Generate an explicit shadow ray for the techniques p_{b} (light source area sampling - a.k.a. "next event estimation")
- Secondary ray for technique p_{a} (BRDF sampling)
- One ray can be shared for the calculation of both direct and indirect illumination
- But the MIS weight is - of course - applied only on the direct term (indirect illumination is added unweighted because there is no second technique to calculate it)

Dealing with multiple light sources

- Option 1:

1. Loop over all sources and send a shadow ray to each one

- Option 2:

1. Choose one source at random (ideally with prob proportional to light contribution)
2. Sample illumination only on the chosen light, divide the result by the prob of picking that light

- (Scales better with many sources but has higher variance per path)
- Beware: The probability of choosing a light influences the sampling pds and therefore also the MIS weights.

Learning the lights' contributions

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for adaptive direct illumination sampling. ACM SIGGRAPH 2018

Learning the lights' contributions

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for adaptive direct illumination sampling. ACM SIGGRAPH 2018

